

List of SAC Background Documents (Disk 1)

Click Here for	Information About the FEMA-Funded SAC Steel Project and the SAC Background Documents
SAC/BD-96/01,	Selected Results from the SAC Phase 1 Beam-Column Connection Pre-Test Analyses
SAC/BD-96/03,	Selected Documents from the U.SJapan Workshop on Steel Fracture Issues
SAC/BD-96/04,	Survey of Computer Programs for the Analysis of Steel Moment Frame Structures
SAC/BD-97/01,	Through-Thickness Properties of Structural Steels
SAC/BD-97/02,	Protocol for Fabrication, Inspection, Testing and Documentation of Beam-Column Connection Tests and Other Experimental Specimens
SAC/BD-97/03,	Proposed Statistical and Reliability Framework for Comparing and Evaluating Predictive Models for Evaluation and Design, and Critical Issues in Developing Such Framework
SAC/BD-97/04,	Development of Ground Motion Time Histories for Phase 2 of the FEMA/SAC Steel Project
SAC/BD-97/05,	Finite Element Fracture Mechanics Investigation of Welded Beam-Column Connections
SAC/BD-98/01,	Strength and Ductility of FR Welded-Bolted Connections
SAC/BD-98/02,	Effects of Strain Hardening and Strain Aging on the K-Region of Structural Shapes
SAC/BD-98/03,	Implementation Issues for Improved Seismic Design Criteria: Report on the Social, Economic, Policy and Political Issues Workshop
SAC/BD-99/01,	Parametric Study on the Effect of Ground Motion Intensity and Dynamic Characteristics on Seismic Demands in Steel Moment Resisting Frames
SAC/BD-99/01A,	Appendix to: Parametric Study on the Effect of Ground Motion Intensity and Dynamic Characteristics on Seismic Demands in Steel Moment Resisting Frames
SAC/BD-99/02,	Through-Thickness Strength and Ductility of Column Flanges in Moment Connections
SAC/BD-99/03,	The Effects of Connection Fractures on Steel Moment Resisting Frame Seismic Demands and Safety
SAC/BD-99/04,	Effects of Strength/Toughness Mismatch on Structural and Fracture Behaviors in Weldments
SAC/BD-99/05,	Assessment of the Reliability of Available NDE Methods for Welded Joints and the Development of UT Procedures
SAC/BD-99/06,	Prediction of Seismic Demands for SMRFs with Ductile Connections and Elements
SAC/BD-99/07,	Characterization of the Material Properties of Rolled Sections

(Continued on next page)

About the FEMA-Funded SAC Steel Project and the SAC Background Documents

SAC Steel Project

The SAC Steel Project commenced in 1994 after the discovery of brittle fractures in numerous beam-tocolumn welded connections in steel-frame buildings in the Los Angeles area, resulting from the January 17, 1994 Northridge, California, earthquake.

Under Phase 1 of the SAC Steel Project, which was funded by the Federal Emergency Management Agency (FEMA) and the California Governor's Office of Emergency Services, the SAC Joint Venture (see below) conducted an Invitational Workshop on Steel Seismic Issues, performed problem-focused studies of the seismic performance of steel moment-frame buildings, and developed recommendations for professional practice. Phase 1 was completed in late 1995 with the publication of a series of Technical Reports and a series of advisories and interim guidelines for the evaluation, repair, modification and design of these steel moment-frame buildings. These advisories and interim guidelines were superseded by the reports published under Phase II.

Phase II, an extensive 5-year FEMA-funded problem-focused study of the performance of moment resisting steel frames and connections of various configurations, commenced in September 1995. The work included extensive analyses of buildings, detailed finite element and fracture mechanics investigations of various connections, and more than 120 full-scale tests of connection assemblies. Phase II culminated in the year 2000 with the publication of four Seismic Design Recommended Criteria, six State-of-the-Art Reports, and 66 Background Documents.

All SAC Steel Project Phase I and Phase II reports are now available through the Applied Technology Council.

SAC Joint Venture

SAC is a joint venture of the Structural Engineers Association of California (SEAOC), the Applied Technology Council (ATC), and California Universities for Research in Earthquake Engineering (CUREe), formed specifically to address both immediate and long-term needs related to solving performance problems with welded, steel moment-frame connections discovered following the 1994 Northridge earthquake. Phase I and Phase II of the SAC Joint Steel Project were carried out under the direction of the SAC Joint Venture Management Committee and the SAC Project Management Committee. The research and development team included consultants and subcontractor universities and organizations from across the nation, uniquely qualified to solve problems related to the seismic performance of steel moment-frame structures.

SAC Background Documents

The SAC Background Document series was developed to disseminate SAC research results and other information related to the mission and goals of the SAC Steel Project. The material was especially important in developing the formal State-of-the-Art reports and the set of four Seismic Design Recommended Criteria published separately by FEMA. Some of the research results presented in the Background Documents have been published in some form in the peer-reviewed technical literature. The Background Documents, however, have not been reviewed for accuracy, and the SAC Joint Venture has not verified any of the results presented. The documents are not intended to be used directly for design or for any specific building project and do not necessarily represent official findings or recommendations of FEMA, the SAC Joint Venture, the SAC Joint Venture partners, or the SAC Steel Project participants. In addition, the documents have not been formatted for formal publication, nor have they been edited or reviewed for consistency with other SAC documents. In some cases, the Background Documents contain handwritten notes, and in many cases, the quality of the text and the figures is below the normal standard of the joint venture partners. This set of Background Document CDs contain all these imperfections, exacerbated in part by the automatic scanning process utilized to convert printed copies of the documents into electronic format for inclusion in this set of CDs. This set of CDs has been prepared by the SAC Joint Venture with partial funding from the Federal Emergency Management Agency, under contract number EMW-95-C-4770.

List of SAC Background Documents (Disk 2)

Click Here for	Information About the FEMA-Funded SAC Steel Project and the SAC Background Documents
SAC/BD-99/08,	Study of the Material Properties of the Web-Flange Intersection of Rolled Shapes
SAC/BD-99/09,	Investigation of Damage to WSMF by Earthquakes Other Than Northridge
SAC/BD-99/10,	Clarifying the Extent of Northridge-Induced Weld Fracturing; Examining the Related Issue of UT Reliability
SAC/BD-99/11,	The Impact of Earthquakes on Welded Steel Moment Frame Buildings: Experience in Past Earthquakes
SAC/BD-99/12,	Assessment of the Benefits of Implementing the New Seismic Design Criteria and Inspection Procedures
SAC/BD-99/13,	Earthquake Loss Estimation Methods for WSMF Buildings
SAC/BD-99/14,	Simplified Loss Estimation for Pre-Northridge WSMF Buildings
SAC/BD-99/15,	Integrative Analytical Investigations on the Fracture Behavior of Welded Moment Resisting Connections
SAC/BD-99/16,	Seismic Performance of 3 and 9 Story Partially Restrained Moment Frame Buildings
SAC/BD-99/17,	Effects of Partially Restrained Connection Stiffness and Strength on Frame Seismic Performance
SAC/BD-99/18,	<i>Effects of Hysteretic Deterioration Characteristics on Seismic Response of Moment Resisting Steel Structures</i>
SAC/BD-99/19,	Cyclic Instability of Steel Moment Connections with Reduced Beam Sections
SAC/BD-99/20,	Local and Lateral-Torsional Buckling of Wide-Flange Beams
SAC/BD-99/21,	Elastic Models for Predicting Building Performance
SAC/BD-99/22,	Reliability-Based Seismic Performance Evaluation of Steel Frame Buildings Using Nonlinear Static Analysis Methods
SAC/BD-99/23,	Failure Analysis of Welded Steel Moment-Resisting Frame Connections Parts I and II
SAC/BD-99/24,	Weld Acceptance Criteria for Seismically-Loaded Welded Connections
SAC/BD-00/01,	Parametric Tests on Unreinforced Connections Volume \tilde{I} Final Report
SAC/BD-00/01A,	Parametric Tests on Unreinforced Connections Volume II Appendices
SAC/BD-00/02,	Parametric Tests on the Free Flange Connections
SAC/BD-00/03,	Cyclic Tests on Simple Connections, Including Effects of the Slab
SAC/BD-00/04,	Tests on Bolted Connections Part I: Technical Report
SAC/BD-00/04A,	Tests on Bolted Connections Part II: Appendices

(Continued on next page)

About the FEMA-Funded SAC Steel Project and the SAC Background Documents

SAC Steel Project

The SAC Steel Project commenced in 1994 after the discovery of brittle fractures in numerous beam-tocolumn welded connections in steel-frame buildings in the Los Angeles area, resulting from the January 17, 1994 Northridge, California, earthquake.

Under Phase 1 of the SAC Steel Project, which was funded by the Federal Emergency Management Agency (FEMA) and the California Governor's Office of Emergency Services, the SAC Joint Venture (see below) conducted an Invitational Workshop on Steel Seismic Issues, performed problem-focused studies of the seismic performance of steel moment-frame buildings, and developed recommendations for professional practice. Phase 1 was completed in late 1995 with the publication of a series of Technical Reports and a series of advisories and interim guidelines for the evaluation, repair, modification and design of these steel moment-frame buildings. These advisories and interim guidelines were superseded by the reports published under Phase II.

Phase II, an extensive 5-year FEMA-funded problem-focused study of the performance of moment resisting steel frames and connections of various configurations, commenced in September 1995. The work included extensive analyses of buildings, detailed finite element and fracture mechanics investigations of various connections, and more than 120 full-scale tests of connection assemblies. Phase II culminated in the year 2000 with the publication of four Seismic Design Recommended Criteria, six State-of-the-Art Reports, and 66 Background Documents.

All SAC Steel Project Phase I and Phase II reports are now available through the Applied Technology Council.

SAC Joint Venture

SAC is a joint venture of the Structural Engineers Association of California (SEAOC), the Applied Technology Council (ATC), and California Universities for Research in Earthquake Engineering (CUREe), formed specifically to address both immediate and long-term needs related to solving performance problems with welded, steel moment-frame connections discovered following the 1994 Northridge earthquake. Phase I and Phase II of the SAC Joint Steel Project were carried out under the direction of the SAC Joint Venture Management Committee and the SAC Project Management Committee. The research and development team included consultants and subcontractor universities and organizations from across the nation, uniquely qualified to solve problems related to the seismic performance of steel moment-frame structures.

SAC Background Documents

The SAC Background Document series was developed to disseminate SAC research results and other information related to the mission and goals of the SAC Steel Project. The material was especially important in developing the formal State-of-the-Art reports and the set of four Seismic Design Recommended Criteria published separately by FEMA. Some of the research results presented in the Background Documents have been published in some form in the peer-reviewed technical literature. The Background Documents, however, have not been reviewed for accuracy, and the SAC Joint Venture has not verified any of the results presented. The documents are not intended to be used directly for design or for any specific building project and do not necessarily represent official findings or recommendations of FEMA, the SAC Joint Venture, the SAC Joint Venture partners, or the SAC Steel Project participants. In addition, the documents have not been formatted for formal publication, nor have they been edited or reviewed for consistency with other SAC documents. In some cases, the Background Documents contain handwritten notes, and in many cases, the quality of the text and the figures is below the normal standard of the joint venture partners. This set of Background Document CDs contain all these imperfections, exacerbated in part by the automatic scanning process utilized to convert printed copies of the documents into electronic format for inclusion in this set of CDs. This set of CDs has been prepared by the SAC Joint Venture with partial funding from the Federal Emergency Management Agency, under contract number EMW-95-C-4770.

List of SAC Background Documents (Disk 3)

Click Here for	Information About the FEMA-Funded SAC Steel Project and the SAC Background Documents
SAC/BD-00/05,	Bolted Flange Plate Connections
SAC/BD-00/06,	Round-Robin Testing of Ultrasonic Testing Technicians
SAC/BD-00/07,	Dynamic Tension Tests of Simulated Welded Beam Flange Connections
SAC/BD-00/09,	Bynamic Tension Tesis of Simulated Welded Beam Flange Connections Benchmarking of Analysis Programs for SMRF System Performance Studies
SAC/BD-00/10,	Loading Histories for Seismic Performance Testing of SMRF Components and Assemblies
SAC/BD-00/12,	Evaluation of the Effect of Welding Procedure on the Mechanical Properties of FCAW-S and SMAW Weld Metal Used in the Construction of Seismic Moment Frames
SAC/BD-00/13,	Preliminary Evaluation of Heat Affected Zone Toughness in Structural Shapes Used in the Construction of Seismic Moment Frames
SAC/BD-00/14,	Evaluation of Mechanical Properties in Full-Scale Connections and Recommended Minimum Weld Toughness for Moment Resisting Frames
SAC/BD-00/15,	Simplified Design Models for Predicting the Seismic Performance of Steel Moment Frame Connections
SAC/BD-00/16,	SAC Phase 2 Test Plan
SAC/BD-00/17,	Behavior and Design of Radius Cut Reduced Beam Section Connections
SAC/BD-00/18,	Test of a Free Flange Connection with a Composite Floor Slab
SAC/BD-00/19,	Cyclic Testing of a Free Flange Moment Connection
SAC/BD-00/20,	Improvement of Welded Connections Using Fracture Tough Overlays
SAC/BD-00/21,	Cyclic Testing of Bolted Moment End-Plate Connections
SAC/BD-00/22,	<i>Cyclic Response of RBS Moment Connections: Loading Sequence and Lateral</i> <i>Bracing Effects</i>
SAC/BD-00/23,	<i>Cyclic Response of RBS Moment Connections: Weak-Axis Configuration and Deep Column Effects</i>
SAC/BD-00/24,	Development and Evaluation of Improved Details for Ductile Welded Unreinforced Flange Connections
SAC/BD-00/25,	Performance Prediction and Evaluation of Steel Special Moment Frames for Seismic Loads
SAC/BD-00/26,	Performance Prediction and Evaluation of Low Ductility Steel Moment Frames for Seismic Loads
SAC/BD-00/27,	Cover-Plate and Flange-Plate Reinforced Steel Moment-Resisting Connections
SAC/BD-00/28,	Failure of a Column K-Area Fracture
SAC/BD-00/29,	Inspection Technology Workshop
SAC/BD-00/30,	Preliminary Assessment of the Impact of the Northridge Earthquake on Construction Costs of Steel Moment Frame Buildings

(Continued on next page)

SAC is a joint venture of three nonprofit organizations: Structural Engineers Association of California, Applied Technology Council, and California Universities for Research in Earthquake Engineering. The SAC Steel Project is funded by the Federal Emergency Management Agency (FEMA).

About the FEMA-Funded SAC Steel Project and the SAC Background Documents

SAC Steel Project

The SAC Steel Project commenced in 1994 after the discovery of brittle fractures in numerous beam-tocolumn welded connections in steel-frame buildings in the Los Angeles area, resulting from the January 17, 1994 Northridge, California, earthquake.

Under Phase 1 of the SAC Steel Project, which was funded by the Federal Emergency Management Agency (FEMA) and the California Governor's Office of Emergency Services, the SAC Joint Venture (see below) conducted an Invitational Workshop on Steel Seismic Issues, performed problem-focused studies of the seismic performance of steel moment-frame buildings, and developed recommendations for professional practice. Phase 1 was completed in late 1995 with the publication of a series of Technical Reports and a series of advisories and interim guidelines for the evaluation, repair, modification and design of these steel moment-frame buildings. These advisories and interim guidelines were superseded by the reports published under Phase II.

Phase II, an extensive 5-year FEMA-funded problem-focused study of the performance of moment resisting steel frames and connections of various configurations, commenced in September 1995. The work included extensive analyses of buildings, detailed finite element and fracture mechanics investigations of various connections, and more than 120 full-scale tests of connection assemblies. Phase II culminated in the year 2000 with the publication of four Seismic Design Recommended Criteria, six State-of-the-Art Reports, and 66 Background Documents.

All SAC Steel Project Phase I and Phase II reports are now available through the Applied Technology Council.

SAC Joint Venture

SAC is a joint venture of the Structural Engineers Association of California (SEAOC), the Applied Technology Council (ATC), and California Universities for Research in Earthquake Engineering (CUREe), formed specifically to address both immediate and long-term needs related to solving performance problems with welded, steel moment-frame connections discovered following the 1994 Northridge earthquake. Phase I and Phase II of the SAC Joint Steel Project were carried out under the direction of the SAC Joint Venture Management Committee and the SAC Project Management Committee. The research and development team included consultants and subcontractor universities and organizations from across the nation, uniquely qualified to solve problems related to the seismic performance of steel moment-frame structures.

SAC Background Documents

The SAC Background Document series was developed to disseminate SAC research results and other information related to the mission and goals of the SAC Steel Project. The material was especially important in developing the formal State-of-the-Art reports and the set of four Seismic Design Recommended Criteria published separately by FEMA. Some of the research results presented in the Background Documents have been published in some form in the peer-reviewed technical literature. The Background Documents, however, have not been reviewed for accuracy, and the SAC Joint Venture has not verified any of the results presented. The documents are not intended to be used directly for design or for any specific building project and do not necessarily represent official findings or recommendations of FEMA, the SAC Joint Venture, the SAC Joint Venture partners, or the SAC Steel Project participants. In addition, the documents have not been formatted for formal publication, nor have they been edited or reviewed for consistency with other SAC documents. In some cases, the Background Documents contain handwritten notes, and in many cases, the quality of the text and the figures is below the normal standard of the joint venture partners. This set of Background Document CDs contain all these imperfections, exacerbated in part by the automatic scanning process utilized to convert printed copies of the documents into electronic format for inclusion in this set of CDs. This set of CDs has been prepared by the SAC Joint Venture with partial funding from the Federal Emergency Management Agency, under contract number EMW-95-C-4770.