Since 1991, the Structural Engineers Association of Washington (SEAW) has published several editions of the Wind Commentary to the Uniform Building Code. The documents have been made available by SEAW to help design, construction, and enforcement professionals better understand the contents of current wind codes and thereby provide a means to reduce losses resulting from wind damage. Prior editions have addressed a wide variety of wind topics as well as example problem solutions.

This third (2004) edition of the Wind Commentary has been updated to incorporate new knowledge on wind design and to provide commentary to the wind provisions of the newly published International Building Code, as well as ASCE 7, Minimum Design Loads for Buildings and Other Structures, which is published by the American Society of Civil Engineers (ASCE). The newly published 2000 and 2003 editions of the International Building Code have evolved from the decision, in the late 1990s, to combine the three model code organizations in the United States — the Building Officials and Code Administrators International, which published the National Building Code; the International Conference of Building Officials, which published the Uniform Building Code; and the Southern Building Code Congress, which published the Southern Building Code — into one organization, the International Code Council (ICC). With the creation of the ICC, a corollary national goal was to establish one primary reference standard for the design of buildings. This goal was met in the late 1990s with the consensus decision amongst leading design professionals to adopt ASCE 7 as the key reference standard.

In addition to providing commentary for the IBC and ASCE 7, this third (2004) edition of the Wind Commentary also discusses wind provisions in the International Residential Code (IRC), which applies to conventional housing and is published by the International Code Council.

Similar to the prior editions, this Wind Commentary provides extensive information and commentary on wind topics addressed by the IBC, the IRC, and ASCE 7, and problem solutions using the IBC and ASCE 7 wind pressures.

This document is organized into two volumes. Volume 1 contains the main body of the Commentary, which includes a technical and historic overview of wind codes and discussions on a broad range of topics:

- basic wind speed;
- importance factors;
- exposure and topographic effects;
- gust response;
- design for wind pressures on main wind-force-resisting systems;
- wind pressures on components and cladding of structures;
- glass and glazing;
- prescriptive provisions;
- miscellaneous and non-building structures;
- unusual wind loading configurations;
- high winds, hurricanes, and tornadoes;
- serviceability;
- wind tunnel tests applied to design practice; and
- wind design of equipment and non-building systems.

Volume 2 consists of appendices containing 13 example problems with solutions.

SEAW and the Applied Technology Council (ATC), who now serves as the publisher for the Wind Commentary, gratefully acknowledge the SEAW members who developed this report and the ATC-engaged Project Engineering Panel (PEP), who provided overview and guidance. The SEAW participants consisted of John Tate (SEAW President) and the following members of the SEAW State Wind Engineering Committee: Donald R. Scott (Chairman of the SEAW Wind Engineering Committee), Jerry J. Barbera (Chairman, SEAW Commentary and Handbook Committees), Ahmad, Asili, Scott Beard, Edwin T. Huston, Edgar Lebert, John V. Loscheider, William H. Mooseker, and Tony Tschanz. The ATC-appointed PEP consisted of James Delahay (Chairman), Ronald A. Cook, Larry Griffis, Jon A. Pe-
A. Gerald Brady edited the report, and Peter N. Mork, Michelle Schwartzbach, and Angela Seybold provided report production services. The affiliations of these individuals are provided in the list of project participants.

Christopher Rojahn, ATC Executive Director
Donald R. Scott, SEAW Wind Engineering Committee Chairman
Contents

Volume 1

Preface .. iii

List of Figures .. xi

List of Tables .. xvii

1. Technical and Historical Overview of Wind Codes ... 1
 1.1 Introduction .. 1
 1.2 Overview of ASCE 7, IBC, and IRC Wind Loading Methodologies 1
 1.2.1 The ASCE Standard No. 7 – 1998 and 2002 Editions ... 1
 1.2.2 The 2000 and 2003 IBC .. 2
 1.2.3 The 2000 and 2003 IRC .. 3
 1.3 Origin of the International Building Code .. 3
 1.4 History of Wind Provisions in Earlier Model Codes .. 4
 1.4.1 Uniform Building Code ... 4
 1.4.2 The Standard Building Code .. 10
 1.4.3 The BOCA National Code .. 13
 1.5 Wind Provisions in ANSI A58.1 and ASCE 7 Standards ... 15
 1.5.1 Early History of the Loading Standard ... 15
 1.5.2 ASCE Paper: “Wind Forces on Structures” ... 16
 1.5.3 ANSI A58.1-1972 ... 17
 1.5.4 ANSI A58.1-1982 ... 18
 1.5.5 MBMA Metal Building System Manual Design Procedure 19
 1.5.6 1988 ASCE Standard No. 7 ... 19
 1.5.7 1993, 1995 and 1998 ASCE 7 ... 20

2. Quality Assurance .. 23
 2.1 Relevant 2000/2003 IBC Sections ... 23
 2.2 Quality Assurance Plans to Provide for “Designed-In” Wind Resistance 24
 2.3 Structural Observation .. 25
 2.4 The Quality Assurance Plan ... 25

3. General Overview of Requirements: IBC, IRC, and ASCE 7 .. 27
 3.1 Selected and Relevant 2003 IBC Sections .. 27
 3.2 Discussion of the IBC Provisions ... 27
 3.2.1 IBC Design Basis ... 27
 3.2.2 IBC Wind Design Methods in General ... 28
 3.2.3 General Details of Alternatives .. 29
 3.2.4 Other Supplementary Standards .. 32
 3.2.5 Design Criteria and Factors .. 32
 3.3 International Residential Code (IRC) .. 33
 3.4 Selected and Relevant ASCE 7-98 Sections (ASCE 7-02 Similar) 33
 3.5 Discussion of the ASCE 7 Design Criteria .. 34
 3.5.1 Details of the Methods and Options ... 34
 3.6 Flood Loading and Wind Actions .. 38
 3.7 Load Precision and Engineering Judgment .. 38
8.3.2 Windward and Leeward Pressures ... 85
8.3.3 Internal Pressures .. 85
8.4 Complete Load Path .. 86
8.5 Directionality Factor .. 87
8.6 Load Combinations and Stress Increases .. 87
8.6.1 Load Combinations ... 87
8.6.2 Stress Increases .. 88
8.7 Overview of the Wind Design Methods .. 89
8.7.1 Comments on the Analytic Method ... 89
8.7.2 Comments on Simplified Methods .. 94
8.7.3 Comments on Torsional Wind Loads .. 95
8.8 Stability .. 103
9. Wind Pressures on Components and Cladding of Structures 105
9.1.1 Selected and Relevant IBC Sections ... 105
9.1.2 Selected and Relevant ASCE 7 Sections 105
9.2 Design of Components and Cladding .. 106
9.2.1 General ... 106
9.2.2 Areas of “Discontinuities” ... 108
9.2.3 Effective Wind Areas ... 110
9.3 Pressures on Structural Elements .. 110
9.4 Determining Code Pressure Values .. 111
9.4.1 2003 IBC Methods (2000 IBC Similar) ... 111
9.4.2 ASCE Methods ... 111
9.5 Practical Design Tips ... 111
9.6 Internal Pressure Effects ... 112
9.6.1 Openings ... 114
9.7 Other IBC-Regulated Components and Cladding 115
10. Glass and Glazing ... 117
10.1 Relevant 2000 and 2003 IBC Sections ... 117
10.2 Introduction ... 118
10.3 General Requirements for Glass and Glazing 118
10.3.1 Summary ... 118
10.3.2 Deflection Limits, General ... 120
10.4 Specific Wind Design Provisions for Glass and Glazing 120
10.5 Other Glazing Materials ... 121
10.6 Provisions for Glazing in Hurricane-Prone Regions in Both the IBC and ASCE 7 121
10.7 Practical Examples Demonstrating Glazing Wind Pressure Design or Analysis 122
11. Prescriptive Provisions in the IBC, IRC, and Other Referenced Standards 125
11.1 Selected Relevant IBC Sections .. 125
11.2 Selected Relevant IRC Sections .. 126
11.3 Code Basis for Conventional Construction 128
11.3.1 Introduction .. 128
11.3.2 2000 IBC Provisions .. 130
11.3.3 IRC Provisions .. 133
11.4 Referenced Prescriptive Standards: Comparison and Contrast 134
11.4.1 WFMC and SBCCI SSTD-10 Prescriptive Methods 134
11.5 Comparisons of All Four Methods .. 134
11.5.1 General ... 134
11.5.2 Detailing Criteria .. 135
11.6 International Building Code (IBC) Prescriptive Methods 137
11.6.1 Overview of IBC Section 2308 Provisions 137
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.7</td>
<td>General Pitfalls</td>
<td>140</td>
</tr>
<tr>
<td>11.7.1</td>
<td>Load Path</td>
<td>140</td>
</tr>
<tr>
<td>11.7.2</td>
<td>Topography Effect</td>
<td>140</td>
</tr>
<tr>
<td>11.7.3</td>
<td>Helpful Tip</td>
<td>140</td>
</tr>
<tr>
<td>11.7.4</td>
<td>Wind vs. Seismic in Light-Framed Building Design</td>
<td>141</td>
</tr>
<tr>
<td>11.7.5</td>
<td>Deflection Considerations</td>
<td>143</td>
</tr>
<tr>
<td>11.7.6</td>
<td>Narrow Shear Walls or Braced Panels</td>
<td>143</td>
</tr>
<tr>
<td>11.7.7</td>
<td>Gypsum Board Shear Wall and Braced Panels</td>
<td>145</td>
</tr>
<tr>
<td>11.8</td>
<td>Advice on Using the Four Methods</td>
<td>146</td>
</tr>
<tr>
<td>11.8.1</td>
<td>General Loading and Layout</td>
<td>146</td>
</tr>
<tr>
<td>11.8.2</td>
<td>Gable Bracing</td>
<td>147</td>
</tr>
<tr>
<td>11.8.3</td>
<td>Roof Uplift on Rafters</td>
<td>147</td>
</tr>
<tr>
<td>11.8.4</td>
<td>Lack of Hold-Downs in the IBC and IRC Methods</td>
<td>149</td>
</tr>
<tr>
<td>11.9</td>
<td>Advice on Using WFCM Standard</td>
<td>149</td>
</tr>
<tr>
<td>11.9.1</td>
<td>Width Limit</td>
<td>149</td>
</tr>
<tr>
<td>11.9.2</td>
<td>Hold-Downs</td>
<td>149</td>
</tr>
<tr>
<td>11.10</td>
<td>Advice on Using the SSTD 10 Standard</td>
<td>150</td>
</tr>
<tr>
<td>11.10.1</td>
<td>Wind Pressures</td>
<td>150</td>
</tr>
<tr>
<td>11.10.2</td>
<td>Seismic</td>
<td>150</td>
</tr>
<tr>
<td>11.10.3</td>
<td>Hybrid IRC-WFCM Method</td>
<td>150</td>
</tr>
<tr>
<td>11.11</td>
<td>Nailing Comparison</td>
<td>150</td>
</tr>
<tr>
<td>11.12</td>
<td>Example Problem 11-1: Use of Prescriptive Requirements for a</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>Conventional Wood-Frame Building</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Miscellaneous and Non-Building Structures</td>
<td>165</td>
</tr>
<tr>
<td>12.1.1</td>
<td>Selected Relevant IBC Code Sections</td>
<td>165</td>
</tr>
<tr>
<td>12.1.2</td>
<td>Selected Relevant ASCE 7-98 and ASCE 7-02 Sections</td>
<td>166</td>
</tr>
<tr>
<td>12.2</td>
<td>Membrane Structures</td>
<td>166</td>
</tr>
<tr>
<td>12.2.1</td>
<td>General</td>
<td>166</td>
</tr>
<tr>
<td>12.2.2</td>
<td>Engineering Design Criteria in ASCE 7</td>
<td>166</td>
</tr>
<tr>
<td>12.2.3</td>
<td>Temporary Structures</td>
<td>166</td>
</tr>
<tr>
<td>12.2.4</td>
<td>Awnings, Canopies and Parapets</td>
<td>167</td>
</tr>
<tr>
<td>12.3</td>
<td>Design of Patio Covers</td>
<td>167</td>
</tr>
<tr>
<td>12.4</td>
<td>Details for Other Structures</td>
<td>167</td>
</tr>
<tr>
<td>12.5</td>
<td>Radio and Television Towers</td>
<td>168</td>
</tr>
<tr>
<td>12.5.1</td>
<td>General</td>
<td>168</td>
</tr>
<tr>
<td>12.5.2</td>
<td>ASCE Procedure</td>
<td>169</td>
</tr>
<tr>
<td>12.6</td>
<td>Practical Tips on Design of Towers or Tower-Like Structures</td>
<td>170</td>
</tr>
<tr>
<td>13.</td>
<td>Unusual Wind Loading Conditions</td>
<td>171</td>
</tr>
<tr>
<td>13.1</td>
<td>Introduction</td>
<td>171</td>
</tr>
<tr>
<td>13.2</td>
<td>Mean Roof Height</td>
<td>171</td>
</tr>
<tr>
<td>13.3</td>
<td>Proximity of Wake Effects</td>
<td>172</td>
</tr>
<tr>
<td>13.4</td>
<td>Wake Effects at Courtyards</td>
<td>172</td>
</tr>
<tr>
<td>13.5</td>
<td>Roof Overhangs and Canopies</td>
<td>173</td>
</tr>
<tr>
<td>13.6</td>
<td>Balconies</td>
<td>174</td>
</tr>
<tr>
<td>13.7</td>
<td>Partially Enclosed Parking Garages</td>
<td>174</td>
</tr>
<tr>
<td>13.8</td>
<td>Structures near Stepped Terrain</td>
<td>175</td>
</tr>
<tr>
<td>13.8.1</td>
<td>1998 ASCE 7 Procedure</td>
<td>175</td>
</tr>
<tr>
<td>13.8.2</td>
<td>Design Based on a Structure’s “Life Span”</td>
<td>177</td>
</tr>
<tr>
<td>13.9</td>
<td>Overturning and Uplift Effects</td>
<td>177</td>
</tr>
<tr>
<td>13.10</td>
<td>Topographic Effects</td>
<td>179</td>
</tr>
<tr>
<td>13.11</td>
<td>Determining Site Exposures</td>
<td>180</td>
</tr>
<tr>
<td>13.12</td>
<td>Pressures on Partitions in Partially Enclosed Structures</td>
<td>181</td>
</tr>
</tbody>
</table>
17.1 General... 221
17.2 Static Wind Forces.. 222
17.3 Static Wind Drag Coefficients.. 223
 17.3.1 General ... 223
 17.3.2 Cross-Section Shape .. 223
 17.3.3 Aspect Ratio .. 223
 17.3.4 Solidity Ratio .. 224
 17.3.5 Shielding .. 224
 17.3.6 Wind Direction .. 224
 17.3.7 Aeroelasticity .. 224
 17.3.8 Load Combinations and Interactions .. 224
17.4 Dynamic Wind Forces ... 224
 17.4.1 Vortex Shedding ... 225
 17.4.2 Flutter ... 225
 17.4.3 Interference or Wake Buffeting .. 225
17.5 Wind Loads for Specific Structures .. 225
17.6 Skewed Wind Forces on Horizontal-Span Structures... 226
 17.6.1 Example 17-1 ... 226
 17.6.2 Example 17-2 ... 227

References .. 229
References for Further Study ... 234
Project Participants .. 237

Volume 2 – Appendices

Introduction: Problem Solutions using IBC and ASCE 7 Wind Provisions................................. 1
A. Example Problem 1-MWFRS: Wind Loading for a Rectangular Building with
 Steep-Gable Roof ... A-1
B. Example Problem 2-MWFRS: Wind Loading for a Regular Building with a Gable Roof B-1
C1. Example Problem 3-MWFRS: Wind Loading on a One-Story Tilt-Up Building C1-1
C2. Example Problem 3-C&C: Component Wind Pressures on a One-Story Tilt-Up Building C2-1
C3. Example Problem 3-MWFRS and C&C: Tilt-Up Building Subject to Wind
 Speed-Up Effects ... C3-1
D1. Example Problem 4-MWFRS: Wind Loading on a Five-Story Building............................ D1-1
D2. Example Problem 4-C&C: Wind Pressures on a Five-Story Building D2-1
E1. Example Problem 5-MWFRS: Wind Loading on a One-Story Gable-Frame Building E1-1
E2. Example Problem 5-C&C: Component Wind Pressures on a Gable-Frame Building E2-1
F1. Example Problem 6-MWFRS: Wind Loading of a Seven-Story Office Building F1-1
F2. Example Problem 6-C&C: Components and Cladding Wind Pressures on
 a Seven-Story Office Building ... F2-1
G. Example Problem 7-MWFRS: Wind Design of a Pole-Supported Sign and Foundation G-1
H. Example Problem 8-MWFRS: Wind Design of an Open Frame Tower H-1