Since 1991, the Structural Engineers Association of Washington (SEAW) has published several editions of the *Wind Commentary to the Uniform Building Code*. The documents have been made available by SEAW to help design, construction, and enforcement professionals better understand the contents of current wind codes and thereby provide a means to reduce losses resulting from wind damage. Prior editions have addressed a wide variety of wind topics as well as example problem solutions.

This third (2004) edition of the *Wind Commentary* has been updated to incorporate new knowledge on wind design and to provide commentary to the wind provisions of the newly published *International Building Code*, as well ASCE 7, *Minimum Design Loads for Buildings and Other Structures*, which is published by the American Society of Civil Engineers (ASCE). The newly published 2000 and 2003 editions of the *International Building Code* have evolved from the decision, in the late 1990s, to combine the three model code organizations in the United States — the Building Officials and Code Administrators, International, which published the *National Building Code*; the International Conference of Building Officials, which published the *Uniform Building Code*; and the Southern Building Code Congress, which published the *Southern Building Code* — into one organization, the International Code Council (ICC). With the creation of the ICC, a corollary national goal was to establish one primary reference standard for the design of buildings. This goal was met in the late 1990s with the consensus decision amongst leading design professionals to adopt ASCE 7 as the key reference standard.

In addition to providing commentary for the IBC and ASCE 7, this third (2004) edition of the *Wind Commentary* also discusses wind provisions in the *International Residential Code* (IRC), which applies to conventional housing and is published by the International Code Council.

Similar to the prior editions, this *Wind Commentary* provides extensive information and commentary on wind topics addressed by the IBC, the IRC, and ASCE 7, and problem solutions using the IBC and ASCE 7 wind pressures.

This document is organized into two volumes. Volume 1 contains the main body of the Commentary, which includes a technical and historic overview of wind codes and discussions on a broad range of topics:

- basic wind speed;
- importance factors;
- exposure and topographic effects;
- gust response;
- design for wind pressures on main wind-force-resisting systems;
- wind pressures on components and cladding of structures;
- glass and glazing;
- prescriptive provisions;
- miscellaneous and non-building structures;
- unusual wind loading configurations;
- high winds, hurricanes, and tornadoes;
- serviceability;
- wind tunnel tests applied to design practice; and
- wind design of equipment and non-building systems.

Volume 2 consists of appendices containing 13 example problems with solutions.

SEAW and the Applied Technology Council (ATC), who now serves as the publisher for the *Wind Commentary*, gratefully acknowledge the SEAW members who developed this report and the ATC-engaged Project Engineering Panel (PEP), who provided overview and guidance. The SEAW participants consisted of John Tate (SEAW President) and the following members of the SEAW State Wind Engineering Committee: Donald R. Scott (Chairman of the SEAW Engineering Committee), Jerry J. Barbera (Chairman, SEAW Commentary and Handbook Committees), Ahmad, Asili, Scott Beard, Edwin T. Huston, Edgar Lebert, John V. Loscheider, William H. Mooseker, and Tony Tschanz. The ATC-appointed PEP consisted of James Delahay (Chairman), Ronald A. Cook, Larry Griffis, Jon A. Pe-
Christopher Rojahn, ATC Executive Director
Donald R. Scott, SEAW Wind Engineering Committee Chairman
Contents

Volume 1

Preface.. iii

List of Figures...xi

1. Technical and Historical Overview of Wind Codes...1

2. Quality Assurance ...23

3. General Overview of Requirements: IBC, IRC, and ASCE 7 ..27

4. Basic Wind Speed ..39

5. Importance Factors ...49

6. Exposure and Topographic Effects ...57

7. Gust Response ...73

8. Design of Wind Pressures on Main Wind-Force-Resisting Systems81

9. Wind Pressures on Components and Cladding of Structures105

10. Glass and Glazing ...117

11. Prescriptive Provisions in the IBC, IRC, and Other Referenced Standards125

12. Miscellaneous and Non-Building Structures...165

13. Unusual Wind Loading Conditions ..171

14. High Winds, Hurricanes and Tornadoes ...183

15. Serviceability: A Case for Drift Control ...197

16. Wind Tunnel Tests Applied in Design Practice ..203

17. Wind Design of Equipment and Non-Building Structures221

References..229

Project Participants ..237

Volume 2 – Example Problems

Introduction: Problem Solutions using IBC and ASCE 7 Wind Provisions1

1. Explanatory Comments on Problems Solutions Supporting this Commentary1

2. Synopsis of the Example Problems ...2

2.1. Example Problem 1-MWFRS: Wind Loading for a Rectangular Building with Steep-Gable Roof.................................3

2.2. Example Problem 2-MWFRS: Wind Loading for a Regular Building with a Gable Roof..3
A. Example Problem 1-MWFRS: Wind Loading for a Rectangular Building with Steep-Gable Roof ... A-1
A.1 Problem Description and Data ... A-1
A.2 IBC Simplified Procedure for Low-Rise Buildings ... A-2
A.2.1 Can the IBC Simplified Procedure be Used for this Building? ... A-2
A.2.2 Wind Pressures for the Main Wind Force Resisting System ... A-3
A.2.3 Wind Loads to the Main Wind Resisting Elements .. A-7
A.3 ASCE 7-98 Simplified Procedure for Low-Rise Buildings .. A-12
A.3.1 Can the ASCE 7-98 Simplified Procedure be Used for this Building? .. A-12
A.4 ASCE 7 Method 2a: Analytical Procedure for All Heights ... A-13
A.4.1 Can Method 2a, for All Heights, be Used for this Building? ... A-13
A.4.2 Design Procedure .. A-13
A.4.3 Design Wind Pressures per ASCE 7-98 Figure 6-3 (ASCE 7-02 Figure 6-6): Method 2a ... A-16
A.5 ASCE 7 Method 2b: Analytical Procedure for Buildings: h ≤ 60 ... A-22
A.5.1 Can Method 2b, for Low-Rise Structures, be Used for this Building? .. A-22
A.5.2 Design Procedure .. A-22
A.5.3 Wind Direction .. A-23
A.5.4 Design Wind Pressures per ASCE 7-98 Figure 6-4 (ASCE 7-02 Figure 6-10): Method 2b ... A-24
A.5.5 Summary of Method 2b Results: MWFRS ... A-41
A.6 Comparison of IBC and ASCE 7 Methods and Results ... A-42
A.6.1 North & South End Wall Wind Force Summary .. A-42
A.6.2 Transverse Interior Wall Wind Force Summary ... A-43
A.6.3 Longitudinal Side Wall Wind Force Summary ... A-43
A.6.4 Comparison of Wind Force Methods ... A-43

B. Example Problem 2-MWFRS: Wind Loading for a Regular Building with a Gable Roof ... B-1
B.1 Problem Statement and Data .. B-1
B.2 IBC Simplified Procedure for Low Rise Buildings ... B-2
B.2.1 Can the IBC Simplified Procedure be Used for this Building? ... B-2
B.2.2 Wind Pressures for the Main Wind Force Resisting System ... B-2
B.2.3 Wind Loads to the Main Wind Resisting Elements .. B-5
B.3 ASCE 7 Simplified Procedure for Low-Rise Buildings .. B-7
B.3.1 Can the ASCE 7 Simplified Procedure be Used for this Building? .. B-7
B.3.2 Design Wind Pressures Using ASCE Simplified Procedure ... B-8
B.3.3 Design Wind Pressures per Table 6-2 (ASCE 7) .. B-8
B.3.4 Wind Forces Resisted by the Transverse End Wall ... B-9
B.4 ASCE 7 Method 2a: Analytical Procedure for All Heights .. B-9
B.4.1 Can Method 2a, for All Heights, be Used for this Building? ... B-9
B.6 Comparison of IBC and ASCE 7 Results ..B-26
C.4 Example Problem 3-MWFRS and C&C: Tilt-Up Building Subject to Wind Speed-Up Effects
C.3.1 Problem Description and Data ...C3-1
C.3.2 General Discussion of the Problem ...C3-2
C.3.3 Wind Forces for Winds Perpendicular to the Long Side ...C3-4
C.3.4 Wind Pressures for Winds Perpendicular to the Short SideC3-5
C.3.5 Wind Pressures for a Roof Joist near the Center of the BuildingC3-6
C.3.6 Wind Pressures for Roof Joists Bearing on the North & South WallsC3-7
C.3.7 Wall Anchorage ..C3-11
C.3.8 Design Parameters ..C3-13
C.3.9 Use IBC Simplified Pressures...C3-8
C.3.10 Design Parameters for Use with ASCE Method 2a ...C3-7
C.3.11 Can Method 2a be Used for this Building? ..C3-7
C.3.12 Can Method 2b be Used for this Building? ..C3-14
C.3.13 Can Method 2b, for Low-Rise Structures, be Used for this Building?B-16
C.3.14 Parameters for Use with ASCE Method 2b ..C3-14
C.3.15 Design Wind Forces per Figure 6-6 (ASCE 7): Method 2aC3-11
C.3.16 Design Wind Forces per Figure 6-3 (ASCE 7): Method 2aC3-11
C.3.17 Can Method 2b, for Low-Rise Structures, be Used for this Building?B-16
C.3.18 Parameters for Use with ASCE Method 2b ..C3-14
C.3.19 Can Method 2a be Used for this Building? ..C3-7
C.4.1 Can Method 2b be Used for this Building? ..C3-14
C.4.2 Parameters for Use with ASCE Method 2b ..C3-14
C.4.3 Can Method 2b, for Low-Rise Structures, be Used for this Building?B-16
C.4.4 Parameters for Use with ASCE Method 2a ..C3-17
C.4.5 Can Method 2a be Used for this Building? ..C3-17
C.4.6 Design Wind Forces per Figure 6-4 (ASCE 7): Method 2bB-17
C.4.7 Can Method 2b, for Low-Rise Structures, be Used for this Building?B-16
C.4.8 Can Method 2a be Used for this Building? ..B-17
C.5.1 Can Method 2b, for Low-Rise Structures, be Used for this Building?B-16
C.5.2 Design Procedure ...B-17
C.5.3 Wind Direction ...B-17
C.5.4 Design Wind Pressures per Figure 6-4 (ASCE 7): Method 2bB-17
C.5.5 Winds in the North/South Wind Direction ..B-18
C.5.6 Winds in the East/West Wind Direction ..B-23
C.5.7 Summary of Method 2b Results: MWFRS ...B-25
C.6 Comparison of IBC and ASCE 7 Results ..B-26
C.6.1 North & South End Wall Wind Force Summary ...B-26
C.6.2 Discussion ..B-26

C1. Example Problem 3-MWFRS: Wind Loading on a One-Story Tilt-Up BuildingC1-1
C1.1 Problem Description and Data..C1-1
C1.2 Simplified Procedure for Low Rise Buildings ..C1-2
C1.2.1 Can the Simplified Procedure (IBC and ASCE Method 1) be Used?.......................C1-2
C1.2.2 Design Parameters ...C1-3
C1.2.3 Wind Pressures for the Main Wind Force Resisting SystemC1-3
C1.3 ASCE 7 Method 2a: Analytical Procedure for All Heights ..C1-7
C1.3.1 Can Method 2a, for All Heights, be Used for this Building?C1-7
C1.3.2 Parameters for Use with ASCE Method 2a ..C1-7
C1.3.3 Design Wind Forces per Figure 6-6 (ASCE 7): Method 2aC1-11
C1.4 ASCE 7 Method 2b: Analytical Procedure for Mean Roof Height ≤ 60C1-14
C1.4.1 Can Method 2b be Used for this Building? ..C1-14
C1.4.2 Parameters for Use with ASCE Method 2b ..C1-14
C1.4.3 Winds in the North/South Wind Direction ...C1-15
C1.5 Comparison: IBC & ASCE 7 MWFRS Wind Forces ..C1-19
C1.6 Wind Pressures for Roof Joists Bearing on the North & South WallsC2-8
C1.6.1 Case 1: Joists within End Zones ..C2-8
C1.6.2 Case 2: Interior Joists at End Zones ...C2-10
C1.7 Wall Anchorage ..C2-11
C1.7.1 Wall Pressures (Use ASCE 7 Analytical Procedure) ..C2-12
C1.8 Effective Wind Area = 10 s.f. ..C2-7
C1.9 Use IBC Simplified Pressures ...C2-8
C1.9.1 Case 1: Joists within End Zones ..C2-8
C1.9.2 Case 2: Interior Joists at End Zones ...C2-10
C1.10 Can Method 2b, for Low-Rise Structures, be Used for this Building?B-16
C1.11 Can Method 2a be Used for this Building? ..B-17
C1.12 Can Method 2a, for All Heights, be Used for this Building?B-17
C1.13 Parameters for Use with ASCE Method 2a ..B-17
C1.14 Can Method 2b, for Low-Rise Structures, be Used for this Building?B-16
C1.15 Can Method 2a be Used for this Building? ..B-17
C1.16 Parameters for Use with ASCE Method 2b ..B-17
C1.17 Can Method 2b, for Low-Rise Structures, be Used for this Building?B-16
C1.18 Can Method 2a be Used for this Building? ..B-17
C1.19 Parameters for Use with ASCE Method 2a ..B-17
C1.20 Can Method 2b, for Low-Rise Structures, be Used for this Building?B-16
C1.21 Can Method 2a be Used for this Building? ..B-17
C1.22 Parameters for Use with ASCE Method 2a ..B-17
C3.5 Wind Pressures for Winds at 45° to the Building ... C3-7
C3.6 Wind Forces for Winds at 45° to the Building .. C3-8
C3.7 Cladding and Component Pressures for the Various Zones Using the ASCE
“All Heights” Procedure ... C3-10

D1. Example Problem 4-MWFRS: Wind Loading on a Five-Story Building D1-1
D1.1 Problem Description and Data ... D1-1
D1.2 Simplified Procedure for Low Rise Buildings ... D1-2
D1.2.1 Can the Simplified Procedure (IBC and ASCE Method 1) be Used? D1-2
D1.2.2 Design Parameters .. D1-3
D1.2.3 Wind Pressures for the Main Wind Force Resisting System D1-3
D1.3 ASCE 7 Method 2a: Analytical Procedure for All Heights .. D1-7
D1.3.1 Can Method 2a, for All Heights, be Used for this Building? D1-7
D1.3.2 Parameters for Use with ASCE Method 2a .. D1-7
D1.3.3 Determine Design Wind Pressures – Figure 6-6 (ASCE 7) D1-11
D1.3.4 Calculate the Torsional Wind Effects .. D1-14
D1.4 ASCE 7 Method 2b: Analytical Procedure for Mean Roof Height ≤ 60’ D1-16
D1.4.1 Can Method 2b be Used for this Building? .. D1-16
D1.4.2 Parameters for Use with ASCE Method 2b .. D1-16
D1.4.3 Winds in the North/South Wind Direction .. D1-17
D1.4.4 Calculate the Torsional Wind Effects .. D1-19
D1.5 Comparison: IBC& ASCE 7 MWFRS Wind Forces ... D1-20

D2. Example Problem 4-C&C: Wind Pressures on a Five-Story Building D2-1
D2.1 Problem Description and Data ... D2-1
D2.2 Component and Cladding Pressures at the Low Roof ... D2-2
D2.3 IBC Simplified Procedure for Low-Rise Buildings ... D2-2
D2.3.1 Can the IBC and ASCE Simplified Procedure be Used for this Building? D2-2
D2.3.2 Discussion of the Simplified Procedure ... D2-2
D2.3.3 Component and Cladding Pressures for \(V_b = 150 \text{ mph}; h = 30'; \) and Exposure B D2-3
D2.3.4 Design Pressures for Parapets .. D2-4
D2.4 ASCE 7 Analytical Procedure: for Low-Rise Buildings D2-6
D2.4.1 Component and Cladding Pressures per ASCE 7 6.5.12.4.1 for Walls and Roofs . D2-6
D2.4.2 Required for \(G_{cp} \) from ASCE 7 Figure 6-11 .. D2-6
D2.5 Summary of Design Pressures for the Low Roof Area .. D2-9

E1. Example Problem 5-MWFRS: Wind Loading on a One-Story Gable-Frame Building E1-1
E1.1 Wind Loading Design Criteria ... E1-1
E1.2 Determine if Building is “Enclosed” or “Partially Enclosed” ... E1-3
E1.3 Parameters for Determining Wind Forces ... E1-3
E1.3.1 Determine Mean Roof Height .. E1-3
E1.3.2 Wind Forces Acting on a Sloping Roof ... E1-3
E1.4 Simplified Procedure for Low Rise Buildings .. E1-6
E1.4.1 Can the Simplified Procedure (IBC and ASCE Method 1) be Used? E1-6
E1.5 ASCE 7 Method 2a: Analytical Procedure for All Heights .. E1-7
E1.5.1 Can Method 2a, for All Heights, be Used for this Building? E1-7
E1.5.2 Design Procedure .. E1-7
E1.5.3 Wind Forces – Winds South to North (South Wall is Windward Wall) E1-9
E1.5.4 Wind Forces – Winds North to South (North Wall is Windward Wall) E1-18
E1.6 ASCE 7 Method 2b: Analytical Procedure w/ Mean Roof Height ≤ 60’ E1-27
E1.6.1 Can Method 2b be Used for this Building? .. E1-27
E1.6.2 Parameters for Use with ASCE Method 2b ... E1-27
E1.6.3 Winds South to North (South Wall is Windward Wall) .. E1-31
E1.6.4 Winds North to South (North Wall is Windward Wall) .. E1-38
E1.7 Summary of Results .. E1-43
E2. Example Problem 5-C&C: Component Wind Pressures on a Gable-Frame Building............................... E2-1
E2.1 Problem Description and Data... E2-1
E2.2 Component and Cladding Pressures per ASCE 7 6.5.12.4.1 for Walls and Roofs E2-3
E2.2.1 General Discussion ... E2-3
E2.2.2 Determination of \(q_z \) ... E2-3
E2.2.3 Determine Width, “a”, of End Zone ... E2-3
E2.3 Component and Cladding Wind Pressures: \(p_w = q_z (GC_p - GC_{pi}) \) ... E2-4
E2.3.1 Wind Pressures from ASCE 7 Figure 6-11 for Varying Effective Wind Areas E2-5
E2.4 Design of Roof Purlins and Girders for Wind .. E2-6
E2.4.1 Wind Design of Roof Beams ... E2-6
E2.5 Wind Design of Wall Girts and Wind Columns... E2-9
E2.5.1 Wind Forces Acting on Wall Girts .. E2-9
E2.5.2 Wind Column “C1” .. E2-10

F1. Example Problem 6-MWFRS: Wind Loading of a Seven-Story Office Building......................... F1-1
F1.1 Problem Description and Data... F1-1
F1.2 ASCE-7 Method 2a: Analytical Procedure for All Heights .. F1-2
F1.2.1 Can the Method 2a, for All Heights, be Used for this Building? ... F1-2
F1.2.2 Parameters for Use with ASCE Method 2a: .. F1-2
F1.2.3 Determine Design Wind Pressures — Figure 6-6 (ASCE-7) .. F1-6
F1.2.4 Horizontal Wind Forces in North/South Direction ... F1-6
F1.3 Calculate the Torsional Wind Effects... F1-7
F1.3.1 Case 2 Loading for Example Building: .. F1-8
F1.3.2 Case 4 Wind Loading: .. F1-8

F2. Example Problem 6-C&C: Components and Cladding Wind Pressures on
a Seven-Story Office Building.. F2-1
F2.1 Problem Description and Data... F2-1
F2.2 Determination of Component and Cladding Pressures: ... F2-2
F2.3 Component and Cladding Pressures per ASCE 7 6.5.12.4.2 ... F2-3
F2.3.1 Determination of \(q_z \) ... F2-3
F2.3.2 Determine Width of End Zone .. F2-4
F2.3.3 Values for \(GC_p \) from ASCE Figure 6-17: .. F2-4
F2.3.4 Negative Wind Pressures: \(p_w = q_z (GC_p - GC_{pi}) \) .. F2-4
F2.4 Alternate Component and Cladding Pressures per ASCE 7 6.5.12.4.3 F2-8
F2.4.1 Design Pressures Using the Alternative Method ... F2-8
F2.4.2 Design Pressures Using the Alternative Method ... F2-9
F2.5 Comparison of Wind Pressures... F2-10
F2.6 Top Floor Mullion Design (Using ASCE 7 Section 6.5.12.4.2): .. F2-11
F2.6.1 Cantilever Moment in the Mullion Due to Wind Acting on the Parapet F2-11
F2.6.2 Maximum Moment in the Studs Between the Roof and the 7th Floor: F2-12
F2.6.3 The Connection of the Top Story Mullions to the Roof Diaphragm F2-13

G. Example Problem 7-MWFRS: Wind Design of a Pole-Supported Sign and Foundation G-1
G.1 Problem Description and Data... G-1
G.2 Wind Pressures Acting on Sign .. G-2
G.2.1 Determination of Wind Pressure \(q_z \) .. G-2
G.2.2 Determination of Net Pressure Coefficient, \(C_f \) .. G-3
G.2.3 Determination of Maximum Shears and Overturning Moments G-3
G.2.4 Design of Pier Foundation .. G-5

H. Example Problem 8-MWFRS: Wind Design of an Open Frame Tower..................................... H-1
H.1 Problem Description and Data... H-1
H.2 Determination of Tower Wind Pressures .. H-1
H.2.1 Application of Wind Forces to Tower ... H-1
H.2.2 ASCE 7 Wind Forces for Wind Perpendicular to a Tower Face H-2
H.3 Base Shear and Overturning Moments for Winds Normal to Tower Face ... H-7
 H.3.1 Panel Geometry .. H-7
 H.3.2 Calculation of Panel Reference Areas \((A_f) \) .. H-8
H.4 Wind Forces for Winds Parallel to Tower Diagonals ... H-10
 H.4.1 Diagonal Winds Acting on the Tower Panels ... H-11
 H.4.2 Diagonal Winds Acting on the Microwave Dishes ... H-11
H.5 Determine the Maximum Overturning Force in a Tower Leg .. H-12

Project Participants.. I-1