ATC 7-1

Proceedings of a Workshop on Design of Horizontal Wood Diaphragms

November 19-20, 1979

by
APPLIED TECHNOLOGY COUNCIL
555 Twin Dolphin Drive, Suite 550
Redwood City, California 94065

Funded by:
NATIONAL SCIENCE FOUNDATION
Washington, DC
Grant Number: PFR77-06490
Dr. John B. Scalzi, Program Manager

WORKSHOP ORGANIZERS Ronald L. Mayes Roland L. Sharpe

WORKSHOP COORDINATOR Wilma Chappell

STEERING COMMITTEE
Noel R. Adams
Charles De Maria
Edward F. Diekmann
Byrne Eggenberger
Edward Teal
Edward G. Zacher

PREFACE

The Proceedings document the results of a Workshop on the Design of Horizontal Wood Diaphragms held on November 19 and 20, 1979. The Workshop was funded by the National Science Foundation and conducted by Applied Technology Council (ATC). The objectives of the Workshop were to summarize the current state-of-practice and to establish research needs for horizontal wood diaphragms.

The Proceedings contain recommendations for future research, seven papers on state-of-the-practice and two papers on recent research. The state-of-the-practice papers are to be used for the development of guidelines for the design of horizontal wood diaphragms. The guidelines will be available from ATC in late 1980.

ATC would like to thank all those individuals who contributed to the success of the Workshop. We are most appreciative of the efforts of Dr. John B. Scalzi, Program Manager of the Earthquake Engineering Program of the National Science Foundation, for his assistance during the planning of the Workshop and for his continuous support and cooperation throughout the project. Our thanks to Mr. Daniel Shapiro, ATC President, and the ATC Board of Directors for their helpful advice and support. Special thanks to the Steering Committee—Noel Adams, Edward Diekmann, Bryne Eggenberger, Charles De Maria, Edward Teal and Edwin Zacher—for their assistance in organizing the workshop and their extensive input and efforts as chairmen of the working groups. Wilma Chappell, Office Administrator of ATC, deserves special mention for her assistance and dedication in handling all the organizational details and making the Workshop an enjoyable experience for all participants. Finally, our sincere appreciation goes to all authors of the papers and all participants who took time from their busy schedules to contribute to the success of the Workshop.

Funding for the Workshop was provided by Grant No. PFR-7706490 from the National Science Foundation and their support is gratefully acknowledged. The conclusions and recommendations expressed herein do not necessarily reflect the views of the National Science Foundation.

RONALD L. MAYES ROLAND L. SHARPE

August 1980

TABLE OF CONTENTS

		Page
PREFACE		i
TABLE OF CON	TENTS	iii
INTRODUCTION		1
OBJECTIV	ES	1
CONTENTS	AND ORGANIZATION	1
	OF RECOMMENDATIONS: IDENTIFICATION OF RIORITY NEEDS	2
	ENDATIONS	5
	METHODS	7
1.	Develop Mathematical Models and Analysis Methods to Predict the Inelastic Response of Diaphragms	7
2.	Develop a Simplified Analytical Model to Predict Deflections of Diaphragms	7
3.	Develop Mathematical Models for Various Types of Wall Construction to Determine Permissible Deformations at Elastic and Inelastic Limits	7
TESTING		9
1.	Perform Additional Dynamic Diaphragm Tests Using Either Cyclic Loads or Input from Realistic Earthquake Motions	9
2.	Determine What, if any, Size Effects Exist in the Performance of Diaphragm Tests	9
3.	Determine by Tests Distances Required for Ties and Collectors to spread Loads into the Diaphragm	9
4.	Tests of Existing Buildings	10
5.	Develop a Performance Criteria for the Testing of Connection Devices, Wall Ties and Collectors	10
6.	Evaluate by Tests Current Design Assumptions Associated with Subdiaphragms	10
7.	Study the Effect of Shear Slip on the Transfer of Diaphragm Shears to Chords or Vertical Resisting Elements	10
8.	Investigate Combination of In-Plane and Normal Forces on Diaphragm Performance	10

9.	Diaphragm Stiffness and Failure Mechanism	10
PARAMETE	R AND CORRELATION STUDIES	11
1.	Correlate the Observed Response of Existing Instrumented Buildings with Appropriate Analytical Models	11
2.		11
3.	Determine the Effects of the Size and Location of Opening on the Force Distribution and Deformation of Diaphragms	11
DESIGN N	EEDS	13
1.	Disseminate Design Information to Engineers and Contractors	13
2.	Improve Post-Earthquake Inspection and Interpretation of Damage Caused by Natural Disasters such as Earthquakes and High Winds	13
3.	Determine More Realistic Methods for the Distribution of Seismic Loads in Wood Diaphragms	13
4.	Determine the Necessity of Code Enforced Aspects Ratios	13
5.	Develop New and/or Reexamine Current Shear Transfer Devices at Diaphragm Boundaries	13
PRIORITIES O	F THE RESEARCH RECOMMENDATIONS	15
	GM MATERIALS	17
TO WIND FORC	MANCE OF WOOD DIAPHRAGMS IN STRUCTURES SUBJECTED ES	51
TO SEISMIC F	MANCE OF WOOD DIAPHRAGMS IN STRUCTURES SUBJECTED ORCES	71
	OF MECHNANICAL FASTENERS IN WOOD DIAPHRAGMS	109
	GM TESTING - PAST, PRESENT, PLANNED	143
	HODS FOR HORIZONTAL WOOD DIAPHRAGMS	173

DESIGN DETAILS FOR THE TRANSFER OF FORCES IN WOOD DIAPHRAGMS TO VERTICAL ELEMENTS	199
SEISMIC ANALYSIS OF WOOD DIAPHRAGMS IN MASONRY BUILDINGS R. D. Ewing, T. J. Healey and M. S. Agbabian	253
PRELIMINARY INVESTIGATIONS INTO THE RESPONSE OF TIMBER DIAPHRAGMS	277
APPENDIX A	297
ATC Report Information Sheet	301