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Preface

Following the two damaging California earthquakes in also provides guidance for the repair of damaged

1989 (Loma Prieta) and 1994 (Northridge), many components.

concrete wall and masonry wall buildings were repaired

using federal disaster assistance funding. The repairs The project also involved a workshop to provide an
were based on inconsistent criteria, giving rise to opportunity for the user community to review and
controversy regarding criteria for the repair of cracked comment on the proposed evaluation and repair criteria.
concrete and masonry wall buildings. To help resolve The workshop, open to the profession at large, was held
this controversy, the Federal Emergency Management in Los Angeles on June 13, 1997 and was attended by
Agency (FEMA) initiated a project on evaluation and 75 participants.

repair of earthquake damaged concrete and masonry

wall buildings in 1996. The project was conducted The project was conducted under the direction of ATC
through the Partnership for Response and Recovery Senior Consultant Craig Comartin, who served as Co-
(PaRR), a joint venture of Dewberry & Davis of Principal Investigator and Project Director. Technical
Fairfax, Virginia, and Woodward-Clyde Federal and management direction were provided by a
Services of Gaithersburg, Maryland. The Applied Technical Management Committee consisting of

Technology Council (ATC), under subcontract to PaRR, Christopher Rojahn (Chair), Craig Comartin (Co-
was responsible for developing technical criteria and Chair), Daniel Abrams, Mark Doroudian, James Hill,
procedures (the ATC-43 project). Jack Moehle, Andrew Merovich (ATC Board
Representative), and Tim McCormick. The Technical
The ATC-43 project addresses the investigation and Management Committee created two Issue Working
evaluation of earthquake damage and discusses policyGroups to pursue directed research to document the
issues related to the repair and upgrade of earthquake-state of the knowledge in selected key areas: (1) an
damaged buildings. The project deals with buildings  Analysis Working Group, consisting of Mark Aschheim
whose primary lateral-force-resisting systems consist of(Group Leader) and Mete Sozen (Senior Consultant)
concrete or masonry bearing walls with flexible or rigid and (2) a Materials Working Group, consisting of Joe
diaphragms, or whose vertical-load-bearing systems Maffei (Group Leader and Reinforced Concrete
consist of concrete or steel frames with concrete or ~ Consultant), Greg Kingsley (Reinforced Masonry
masonry infill panels. The intended audience is design Consultant), Bret Lizundia (Unreinforced Masonry
engineers, building owners, building regulatory Consultant), John Mander (Infilled Frame Consultant),
officials, and government agencies. Brian Kehoe and other consultants from Wiss, Janney,
Elstner and Associates (Tests, Investigations, and
The project results are reported in three documents. Th&epairs Consultant). A Project Review Panel provided
FEMA 306 reportEvaluation of Earthquake Damaged technical overview and guidance. The Panel members
Concrete and Masonry Wall Buildings, Basic were Gregg Borchelt, Gene Corley, Edwin Huston,
Procedures Manuabrovides guidance on evaluating  Richard Klingner, Vilas Mujumdar, Hassan Sassi, Carl
damage and analyzing future performance. Included in Schulze, Daniel Shapiro, James Wight, and Eugene
the document are component damage classification  Zeller. Nancy Sauer and Peter Mork provided technical
guides, and test and inspection guides. FEMA 307,  editing and report production services, respectively.
Evaluation of Earthquake Damaged Concrete and Affiliations are provided in the list of project
Masonry Wall Buildings, Technical Resourcesntains participants.
supplemental information including results from a
theoretical analysis of the effects of prior damage on  The Applied Technology Council and the Partnership
single-degree-of-freedom mathematical models, for Response and Recovery gratefully acknowledge the
additional background information on the component cooperation and insight provided by the FEMA
guides, and an example of the application of the basic Technical Monitor, Robert D. Hanson.
procedures. FEMA 308he Repair of Earthquake
Damaged Concrete and Masonry Wall Buildings Tim McCormick
discusses the policy issues pertaining to the repair of PaRR Task Manager
earthquake damaged buildings and illustrates how the
procedures developed for the project can be used to  Christopher Rojahn
provide a technically sound basis for policy decisions. It ATC-43 Principal Investigator
ATC Executive Director
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