Improved Seismic Design Criteria for California Bridges: Resource Document

ATC 32-1

Applied Technology Council

Funded by CALIFORNIA DEPARTMENT OF TRANSPORTATION
The Applied Technology Council (ATC) is a nonprofit, tax-exempt corporation established in 1971 through the efforts of the Structural Engineers Association of California. ATC is guided by a Board of Directors consisting of representatives appointed by the American Society of Civil Engineers, the Structural Engineers Association of California, the Western States Council of Structural Engineers Associations, and four at-large representatives concerned with the practice of structural engineering. Each director serves a three-year term.

The purpose of ATC is to assist the design practitioner in structural engineering (and related design specialty fields such as soils, wind, and earthquake) in the task of keeping abreast of and effectively using technological developments. ATC also identifies and encourages needed research and develops consensus opinions on structural engineering issues in a nonproprietary format. ATC thereby fulfills a unique role in funded information transfer.

Project management and administration are carried out by a full-time Executive Director and support staff. Project work is conducted by a wide range of highly qualified consulting professionals, thus incorporating the experience of many individuals from academia, research, and professional practice who would not be available from any single organization. Funding for ATC projects is obtained from government agencies and from the private sector in the form of tax-deductible contributions.

1996-1997 Board of Directors

John C. Theiss, President Douglas A. Foutch
C. Mark Saunders, Vice President James R. Libby
Bijan Mohraz, Secretary/Treasurer Kenneth A. Luttrell
Edwin T. Huston, Past President Andrew T. Merovich
Arthur N. L. Chiu Maryann T. Phipps
John M. Coil Jonathan G. Shipp
Edwin T. Dean Charles H. Thornton
Robert G. Dean

Disclaimer

While the information presented in this report is believed to be correct, ATC and the sponsoring agency assume no responsibility for its accuracy or for the opinions expressed herein. The material presented in this publication should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability, and applicability by qualified professionals. Users of information from this publication assume all liability arising from such use.

California Department of Transportation Disclaimer

The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the State of California or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

Cover Illustration:
New Pescadero Creek Bridge
Photo by Bob Colin, California Department of Transportation
ATC-32-1

Improved Seismic Design Criteria for California Bridges:
Resource Document

by
APPLIED TECHNOLOGY COUNCIL
555 Twin Dolphin Drive, Suite 550
Redwood City, California 94065

Funded by
CALIFORNIA DEPARTMENT OF TRANSPORTATION
P.O. Box 942874
Sacramento, CA 94274-0001
Mohsen Sultan, Contract Manager

PRINCIPAL INVESTIGATOR AND PROJECT MANAGER
Richard V. Nutt

PROJECT SUBCONTRACTORS
Earth Mechanics, Inc. (Foundation Design)
Kercheval Engineers (Bridge Design)
Kleinfelder/Geospectra (Seismic Loading)
Modjeski & Masters, Inc. (Steel & Bearing Design)
Moehle/Priestley Team (Concrete Design & Analysis)
Quincy Engineering (Bridge Design)

PROJECT ENGINEERING PANEL
Ian Buckle, Chairman
Robert Cassano
Allen Ely
Nicholas F. Forell*
James H. Gates
I.M. Idriss
Roy A. Imbsen
James O. Jirsa
James R. Libby
Joseph P. Nicoletti
Joseph Penzien
Maurice S. Power
James Roberts

*ATC Board Representative

1996
In May 1991 the California Department of Transportation (Caltrans) awarded the Applied Technology Council (ATC) a contract to conduct a critical review of the 1986 Caltrans Bridge Design Specifications (together with subsequent seismic-design-related revisions made available to ATC throughout the ATC-32 project’s duration) and to recommend improvements where needed. The recommendations developed under the ATC-32 project were published in 1996 in the ATC-32 report, Improved Seismic Design Criteria for California Bridges: Provisional Recommendations, which was formatted in 2 columns to provide recommended changes to Caltrans’ design provisions (left column) and companion commentary (right column). The report was prepared with the assistance of six technical subcontractors and a publications consultant, with guidance and overview provided by an advisory 13-member Project Engineering Panel (PEP). Topics included seismic loading, seismic effects (analysis), concrete design, foundation design, steel design, and bearing design.

During final preparation of the ATC-32 report, the PEP and Project Manager recognized that a significant amount of potentially valuable work carried out by the subcontractors could not be included in the recommendations for revision to the 1986 Caltrans Specifications. Reasons for this decision included the following.

- The material was related to an area of active research, in which there was not a clear consensus among experts in the field.
- There were insufficient resources to allow the PEP to evaluate the material and to decide whether to recommend relevant changes to the 1986 Specifications.
- The material was important for the practice of seismic design, but was inappropriate for either design specifications or commentary.

As a result, ATC created this companion resource document (the ATC-32-1 report) to provide a more complete documentation of the ATC-32 project. The ATC-32-1 report contains chapters on specific topics generally developed by the subcontractors responsible for that topic, including the results from trial designs and design parameter studies by project personnel.

ATC gratefully acknowledges the Project Manager, Richard V. Nutt, and the subcontractors who prepared this report, noting that much of their effort was carried out after the completion of the ATC-32 project when project funding was no longer available.

The detailed technical work required for the development of the recommendations was performed primarily by four specialty subcontractors. J.P. Singh and staff at Klienfelder/Geospectra, were responsible for developing new ARS spectra and other recommendations related to seismic loading. Po Lam and staff at Earth Mechanics, working with Geoff Martin of the University of Southern California, were responsible for the development of the foundation design guidelines. Nigel Priestley of the University of California (UC) San Diego and Jack Moehle of UC Berkeley developed the recommendations related to response analysis and reinforced concrete design. They were assisted by Gregg Fenves of UC Berkeley who was particularly helpful in the development of analysis guidelines. John Kulicki and staff at Modjeski and Masters developed new design criteria for steel structures and conventional bridge bearings.

Trial designs using the draft recommendations to the 1986 Caltrans Specifications were performed by two bridge design consultants. John Quincy directed the efforts of Quincy Engineering, and Kosal Krishnan directed those of Kercheval Engineers. Nonlinear dynamic analysis studies to evaluate near-fault effects were performed by Dynamic Isolation Systems under the direction of Ronald Mayes. An independent external review of the recommendations for structural steel was conducted by Ahmad Itani of the University of Nevada at Reno.

Technical editing and formatting of this report were performed, respectively, by A. Gerald Brady and Michelle Schwartzbach of ATC.

ATC also gratefully acknowledges the advisory PEP, whose members included Ian G. Buckle (Chair), Robert Cassano, Allen Ely, Nicholas Forell (ATC Board representative), James H. Gates (Caltrans representative), I.M. Idriess, Roy A. Imbson, James O. Jirsa, James R. Libby, Joseph P. Nicoletti, Joseph Penzen, Maurice S. Power, and James E. Roberts (Caltrans representative). (The affiliations of these individuals are provided in the list of project participants).

In addition, ATC is pleased to acknowledge other Caltrans personnel involved in the project. Mohsen Sul-
tan was the Contract Manager and coordinated the technical participation of other Caltrans engineers. Dan Kirkland and Tim Leahy served as Contract Administrators and, along with their staff, provided ATC invaluable assistance in complying with Caltrans requirements. Finally, ATC wishes to thank the many Caltrans engineers who have shown an interest in this project by commenting on the draft recommendations, attending PEP meetings, and participating in other discussions.

Christopher Rojahn
ATC Executive Director
Contents

Preface .. iii

List of Figures .. xi

List of Tables .. xxi

1 Introduction .. 1
 1.1 Purpose and Contents ... 1
 1.2 Report Organization ... 1

2 Design Concepts and Design Approach ... 3
 2.1 Performance Criteria ... 3
 2.2 Design Philosophy .. 5
 2.2.1 1986 Caltrans Specifications ... 5
 2.2.2 ATC-32 Recommendations ... 6
 2.3 Design Strategies .. 6

3 Seismic Loading .. 9
 3.1 Review of Caltrans Practice .. 9
 3.2 Proposed ARS Spectra .. 11
 3.2.1 A: Peak Rock Acceleration .. 11
 3.2.2 R: Rock Spectra .. 11
 3.2.3 S: Site Modification Factors .. 12
 3.3 Design Time-Histories ... 17
 3.4 Ground Motion Issues ... 30
 3.4.1 Characterization of Ground Motion for Severity and Damage Potential 30
 3.4.2 Near-Fault Effects ... 30
 3.4.3 Basin Effects .. 31
 3.4.4 Blind Thrust Faults ... 32
 3.4.5 Vertical Motion ... 32
 3.4.6 Relative Displacements ... 32
 3.5 Performance-Based Approach ... 32
 3.6 Site-Specific Response Studies ... 35

4 Dynamic Analysis ... 37
 4.1 Analysis Selection Guidelines ... 37
 4.1.1 Purpose of the Analysis ... 37
 4.1.2 Performance Objective ... 37
 4.1.3 Importance of Structure ... 38
 4.1.4 Regularity of the Structure and Uniformity of the Soil Conditions 38
 4.1.5 Varying Soil Properties and Profiles ... 39
 4.1.6 Availability and Usefulness of Analysis Tools 39
6 Ductile Component Design ... 135
 6.1 Introduction ... 135
 6.2 Seismic Design Forces, Z .. 135
 6.2.1 Introduction ... 135
 6.2.2 Current Z Factors ... 135
 6.2.3 Recommended Z Factors for the Safety Evaluation Earthquake . 139
 6.2.4 Recommendations for the Functional Evaluation Earthquake . 141
 6.3 Plastic Hinge Locations ... 141
 6.4 Load Combinations ... 141

5 Foundation Design ... 65
 5.1 Introduction ... 65
 5.2 Abutments .. 65
 5.2.1 Review of Caltrans Practice .. 65
 5.2.2 Selection of Abutment Types 66
 5.2.3 Abutment Stiffness ... 66
 5.2.4 Abutment Soil Capacity .. 70
 5.2.5 Allowable Displacements ... 72
 5.2.6 Abutment Damping Issues ... 76
 5.2.7 Abutment Embankment Response Issues 77
 5.2.8 Stability of Abutments, and Earth Pressure, for Structural Design ... 78
 5.3 Pile Footings .. 80
 5.3.1 Review of Caltrans Practice .. 80
 5.3.2 Foundation Stiffness ... 80
 5.3.3 Moment Capacity of Pile Group 81
 5.3.4 Lateral Stiffness and Capacity 82
 5.3.5 Structural Pile Design ... 83
 5.4 Column and Pile Shafts .. 86
 5.4.1 Point of Effective Fixity .. 86
 5.4.2 Minimum Shaft Length for Stability Considerations 87
 5.5 Slope Stability Analysis .. 88
 5.5.1 Landslide Classification .. 88
 5.5.2 Geology .. 88
 5.5.3 Earthquake-Induced Landslides 92
 5.5.4 Review of Slope Stability Analysis Approaches 92
 5.6 Analysis and Design of Retaining Walls 108
 5.6.1 Types of Retaining Walls .. 108
 5.6.2 Earth Pressure Theories and Retaining Wall Design 111
 5.7 Force-Based Versus Displacement-Based Foundation Design Criteria ... 131
 5.8 Conclusions ... 133

4.1.7 Recommendations .. 40
4.2 Bridge Dynamic Response and Analysis 40
 4.2.1 General Considerations .. 40
 4.2.2 Linear Dynamic Analysis .. 41
4.3 P-∆ Considerations .. 53
 4.3.1 Introduction ... 53
 4.3.2 Definition of Static P-∆ Effects 53
 4.3.3 Dynamic Response of Simple Structures 54
 4.3.4 Behavior of Steel and Reinforced Concrete Structures 58
 4.3.5 Summary ... 62

5 Foundation Design ... 65
 5.1 Introduction ... 65
 5.2 Abutments .. 65
 5.2.1 Review of Caltrans Practice .. 65
 5.2.2 Selection of Abutment Types 66
 5.2.3 Abutment Stiffness ... 66
 5.2.4 Abutment Soil Capacity .. 70
 5.2.5 Allowable Displacements ... 72
 5.2.6 Abutment Damping Issues ... 76
 5.2.7 Abutment Embankment Response Issues 77
 5.2.8 Stability of Abutments, and Earth Pressure, for Structural Design ... 78
 5.3 Pile Footings .. 80
 5.3.1 Review of Caltrans Practice .. 80
 5.3.2 Foundation Stiffness ... 80
 5.3.3 Moment Capacity of Pile Group 81
 5.3.4 Lateral Stiffness and Capacity 82
 5.3.5 Structural Pile Design ... 83
 5.4 Column and Pile Shafts .. 86
 5.4.1 Point of Effective Fixity .. 86
 5.4.2 Minimum Shaft Length for Stability Considerations 87
 5.5 Slope Stability Analysis .. 88
 5.5.1 Landslide Classification .. 88
 5.5.2 Geology .. 88
 5.5.3 Earthquake-Induced Landslides 92
 5.5.4 Review of Slope Stability Analysis Approaches 92
 5.6 Analysis and Design of Retaining Walls 108
 5.6.1 Types of Retaining Walls .. 108
 5.6.2 Earth Pressure Theories and Retaining Wall Design 111
 5.7 Force-Based Versus Displacement-Based Foundation Design Criteria ... 131
 5.8 Conclusions ... 133
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5</td>
<td>Flexural Strength Computation for Plastic Hinges</td>
<td>142</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Current Caltrans Practice</td>
<td>142</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Discussion of Caltrans Practice</td>
<td>143</td>
</tr>
<tr>
<td>6.5.3</td>
<td>Flexural Strength Estimates for Noncircular Sections</td>
<td>146</td>
</tr>
<tr>
<td>6.5.4</td>
<td>Recommended Design Approach for Flexural Strength Computation for Plastic Hinges</td>
<td>146</td>
</tr>
<tr>
<td>6.6</td>
<td>Reinforcement Limits</td>
<td>147</td>
</tr>
<tr>
<td>6.6.1</td>
<td>Introduction</td>
<td>147</td>
</tr>
<tr>
<td>6.7</td>
<td>Ductility Design and Assessment</td>
<td>150</td>
</tr>
<tr>
<td>6.7.1</td>
<td>Introduction—Current Caltrans Practice</td>
<td>150</td>
</tr>
<tr>
<td>6.7.2</td>
<td>Discussion of Current Practice</td>
<td>150</td>
</tr>
<tr>
<td>6.7.3</td>
<td>Confinement for Specified Plastic Rotations</td>
<td>151</td>
</tr>
<tr>
<td>6.7.4</td>
<td>Confinement for Standard Ductility Levels</td>
<td>152</td>
</tr>
<tr>
<td>6.7.5</td>
<td>Confinement for Buckling Restraint</td>
<td>155</td>
</tr>
<tr>
<td>6.7.6</td>
<td>Plastic End Region</td>
<td>157</td>
</tr>
<tr>
<td>6.7.7</td>
<td>Design Recommendations</td>
<td>157</td>
</tr>
<tr>
<td>7</td>
<td>Capacity-Protected Design</td>
<td>159</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>159</td>
</tr>
<tr>
<td>7.2</td>
<td>Capacity Design Factors ϕ_0</td>
<td>159</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Introduction—Caltrans Practice</td>
<td>159</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Discussion of Overstrength Requirements</td>
<td>159</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Recommended Provisions for Capacity Design Actions</td>
<td>160</td>
</tr>
<tr>
<td>7.3</td>
<td>Shear Strength</td>
<td>161</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Basic Concepts</td>
<td>161</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Shear Strength of Beams</td>
<td>164</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Shear Strength Criteria for Columns (Alternative 1)</td>
<td>165</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Shear Strength Criteria for Columns (Alternative 2)</td>
<td>166</td>
</tr>
<tr>
<td>7.3.5</td>
<td>Recommended Shear Strength Criteria for Columns</td>
<td>168</td>
</tr>
<tr>
<td>7.3.6</td>
<td>Shear Strength of Walls</td>
<td>168</td>
</tr>
<tr>
<td>7.4</td>
<td>Joint Strength</td>
<td>170</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Principal Stress Levels</td>
<td>170</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Joint Reinforcement Levels</td>
<td>171</td>
</tr>
<tr>
<td>8</td>
<td>Reinforcing Details</td>
<td>175</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>175</td>
</tr>
<tr>
<td>8.2</td>
<td>Caltrans Practice</td>
<td>175</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Development of Bars in Tension (1986 Caltrans Specifications, Section 8.25)</td>
<td>175</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Splices (1986 Caltrans Specifications, Section 8.32)</td>
<td>175</td>
</tr>
<tr>
<td>8.3</td>
<td>Discussion of Current Practice</td>
<td>176</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Basic Development Length</td>
<td>176</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Modification Factors</td>
<td>176</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Bundled Bars</td>
<td>177</td>
</tr>
<tr>
<td>8.3.4</td>
<td>Splicing</td>
<td>177</td>
</tr>
<tr>
<td>8.4</td>
<td>General Considerations</td>
<td>177</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Anchorage</td>
<td>178</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Lap Splices</td>
<td>180</td>
</tr>
<tr>
<td>8.4.3</td>
<td>Flexural Bond</td>
<td>182</td>
</tr>
<tr>
<td>8.5</td>
<td>Recommendations</td>
<td>183</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Anchorage of Column Reinforcement</td>
<td>183</td>
</tr>
<tr>
<td>8.5.2</td>
<td>Lap Splices</td>
<td>183</td>
</tr>
<tr>
<td>8.5.3</td>
<td>Flexural Bond Limitation</td>
<td>183</td>
</tr>
</tbody>
</table>