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In May 1991 the California Department of Transporta-
tion (Caltrans) awarded the Applied Technology Coun-
cil (ATC) a contract to conduct a critical review of the
1986 Caltrans Bridge Design Specifications (together with
subsequent seismic-design-related revisions made avail-
able to ATC throughout theATC-32 project’s duration)
and to recommend improvements where needed. The
recommendations developed under the ATC-32 project
were published in 1996 in the ATC-32 report, Iimproved
Seismic Design Criteria for California Bridges: Provisional
Recommendations, which was formatted in 2 columns to
provide recommended changes to Caltrans’ design pro-
visions (left column) and companion commentary
(right column). The report was prepared with the assis-
tance of six technical subcontractors and a publications
consultant, with guidance and overview provided by an
advisory 13-member Project Engineering Panel (PEP).
Topics included seismic loading, seismic effects (analy-
sis), concrete design, foundation design, steel design,
and bearing design.

During final preparation of the ATC-32 report, the
PEP and Project Manager recognized that a significant
amount of potentially valuable work carried out by the
subcontractors could not be included in the recommen-
dations for revision to the 1986 Caltrans Specifications.
Reasons for this decision included the following.

m The material was related to an area of active research,
in which there was not a clear consensus among
experts in the field.

m There were insufficient resources to allow the PEP to
evaluate the material and to decide whether to rec-
ommend relevant changes to the 1986 Specifications.

m The material was important for the practice of seis-
mic design, but was inappropriate for either design
specifications or commentary.

As a result, ATC created this companion resource
document (the ATC-32-1 report) to provide a more
complete documentation of the ATC-32 project. The
ATC-32-1 report contains chapters on specific topics
generally developed by the subcontractors responsible
for that topic, including the results from trial designs
and design parameter studies by project personnel.
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