ATC-15

COMPARISON OF BUILDING SEISMIC DESIGN PRACTICES IN THE UNITED STATES AND JAPAN

Funded by

NATIONAL SCIENCE FOUNDATION Grant No. CEE-8307976

Prepared by

APPLIED TECHNOLOGY COUNCIL 2471 E. Bayshore Road, Suite 512 Palo Alto, California 94303

PROJECT STEERING COMMITTEE

United States
Christopher Rojahn, Principal Investigator
Roland L. Sharpe, Co-Principal Investigator
Ajit S. Virdee

Japan Masakazu Ozaki Toshihiko Kimura Yoshio Murata

PREFACE

In March 1984 Applied Technology Council (ATC) organized a team of thirteen building design professionals to meet with a group of ten engineers and researchers from Japan to develop a cooperative United States-Japan program for the improvement of building seismic design and construction practices. The groups agreed to meet in Hawaii because that location involved approximately equal travel distances for the two groups. At the Hawaii meeting, which was conducted in workshop format, the groups reviewed design and construction practices in both countries, developed recommendations pertaining to improved seismic design and construction requirements and procedures, and identified areas of mutual concern, including topics where there is need for future communication and exchange of information.

This report contains the workshop recommendations and conclusions as well as the technical papers presented at the workshop. As such the papers provide an overview of current design practices, including project case studies from both countries.

ATC gratefully acknowledges the efforts of Mr. Walter Lum, who assisted in the organization of the Hawaii meeting, and the encouragement and cooperation provided by Dr. John B. Scalzi, Program Director for Dynamic Structural Experimentation, Civil and Environmental Engineering Division, National Science Foundation.

The material presented in this report is based upon work supported by the National Science Foundation under Grant No. CEE-8307976. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Christopher Rojahn Executive Director Applied Technology Council

TABLE OF CONTENTS

TITLE	PAGE
PREFACE	i
INTRODUCTION	1
RECOMMENDATIONS	7
CONCLUSIONS AND RESOLUTIONS	11
WORKSHOP TECHNICAL PAPERS	13
NEW SEISMIC DESIGN METHOD FOR BUILDINGS IN JAPAN Y. Ishiyama	15
SEISMIC RESISTANT DESIGN PHILOSOPHY AND APPROACH (U.S.) . R. L. Sharpe	25
HIGH-RISE BUILDING WITH 130M HIGH SQUARE ATRIUM (JAPAN) . T. Teramoto	41
SEISMIC DESIGN PRACTICES IN THE UNITED STATES FOR HIGH-RISE STEEL-FRAMED BUILDINGS	65
DESIGN AND CONCEPTS FOR REINFORCED CONCRETE HIGH-RISE BUILDINGS (U.S.)	73
DAMAGE DISTRIBUTION AND CONCENTRATION IN BUILDINGS WITH DEGRADING STIFFNESS SYSTEMS (JAPAN) M. Ozaki	95
PROBLEMS ASSOCIATED WITH "WEAK-BEAM" DESIGN OF REINFORCED CONCRETE FRAMES (JAPAN)	117
SEISMIC DESIGN CONSIDERATIONS FOR MID-RISE REINFORCED CONCRETE BUILDINGS (U.S.)	159
SEISMIC DESIGN CONSIDERATIONS FOR MID-RISE STEEL BUILDINGS IN THE UNITED STATES	177
A UNIQUE MECHANISM OF HIGH-RISE RESIDENTIAL BUILDINGS BY LARGE STEEL STRUCTURAL FRAMEWORK (JAPAN) T. Hisatoku	199
A MID-RISE COMPOSITE STRUCTURE (JAPAN)	217

TABLE OF CONTENTS (CONT.)

	TITLE	PAGE
	, DESIGN AND CONSTRUCTION CONSIDERATIONS OF AST CONCRETE STRUCTURES FOR SEISMIC LOADS (U.S.).	237
EVALUATIO T. Kim	ON OF SEISMIC ACTION ON STEEL DOME (JAPAN) ura	249
	ESIGN CONSIDERATIONS FOR LOW-RISE STEEL INGS (U.S.)	267
CONC	DESIGN AND CONSTRUCTION PRACTICES: LOW-RISE RETE BUILDINGS (U.S.)	279
APPENDIX A	PROJECT PARTICIPANTS	299 301 302
APPENDIX B	JAPAN STRUCTURAL CONSULTANTS ASSOCIATION INFORMATION AND HISTORY	303
APPENDIX C	APPLIED TECHNOLOGY COUNCIL PROJECTS AND REPORT INFORMATION	313